

0960-894X(94)E0043-E

SYNTHESIS OF A NOVEL RING CONTRACTED ARTEMISININ DERIVATIVE.

B. Venugopalan*, C. P. Bapat and P. J. Karnik

Department of Chemistry, Research Centre, Hoechst India Ltd, Mulund,

Bombay, India. 400 080.

Abstract: - Bromoacetal 1 undergoes a novel ring contraction reaction to give the product 2 in the presence of DBU.

In connection with our program to synthesise new ring systems derived from artemisinin, $^{1-4}$ we herein report a facile synthesis of a hitherto unknown ring skeleton.

The bromoacetal 1 was prepared from dihydroartemisinin as reported earlier. Treatment of the bromoacetal 1 with DBU in methylene chloride at room temperature gave a solid 2, mp 100° C, in 85% yield after usual workup and purification. Its I R indicated the presence of a formyl and the peroxide group. In addition, the signal at δ 5.8 (H₁₁) supports the presence of artemisinin ring system. Use of triethylamine in place of DBU in the above reaction also gave the same product 2.

As the aldehyde 2 was found to be relatively unstable, it was reduced to give the alcohol 3 as a solid. Tradiation of OCH_2 signal displayed NOE on the signal assigned to H_{11} , thus confirming that the relative configuration of OCH_2 group is β since the configuration of H_{11} is β as in artemisinin. The formation of the aldehyde 2 with a high stereoselectivity is interesting and it may involve an initial ring opening of D-ring of the bromoacetal 1.

Treatment of dihydroartemisinin with the alcohol 3 in the presence of $\mathrm{BF_3^*Et_2^0}$ gave the two diastereoisomers 4 and 5 in 2:1 ratio. The structures 4 (solid, mp $154-156^{\circ}\mathrm{C}$, yield 40%) and 5 (solid, mp $100^{\circ}\mathrm{C}$, yield 20%) were assigned on the basis of NMR spectral properties. 9 The derivatives 2-5 were tested for blood schizonticidal activity in the mice model with <u>P.berghei</u> k-173 infection and the doses given subcutaneously on each of 5 consecutive days. The derivatives 2 and 3 had an $\mathrm{ED_{90}}$ of 25 mg/Kg and the $\mathrm{ED_{90}}$ of 4 and 5 were 1.25 and 2.5, respectively. The $\mathrm{ED_{90}}$ of arteether 6 and of the derivative 10 6 were 1.25 and

10, respectively. The detailed biological profile of these derivatives will be published elsewhere.

Acknowledgement: We thank Dr. P. K. Inamdar for the spectral data and Dr. D. K. Chatterjee for the biological data.

a. DBU; b. NaBH₄; c. BF₃Et₂O/ Dihydroartemisinin.

References and Notes:

- Butler, A. R.; Wu, Y. Chem. Soc. Rev. 1992,85.
 Venugopalan, B.; Bapat, C. P.; Karnik, P. J.; Lal, B.; Chatterjee, D. K.; Iyer, S. N.; Blumbach, J. Eur. Pat. Appl. EP 456,149, 13 Nov 1991. Chem. Abstr. 1992, 116, P.83708z.
 Venugopalan, B.; Bapat, C.P. Tet. Lett. 1993,34,5787.
 Venugopalan, B.; Shinde, S. L.; Karnik, P. K. Tet. Lett. 1993,34,6305.
 Compound 2. Solid mp 100°C, yield 85%. Mass Spect. m/e M+ 282, M CHO 253. IR (KBr, cm⁻¹): 1740(CO),830,885,1130(peroxide). Analysis Cacled. for C15H22O5.Calcd. (Found): C,63.81(63.72),H,7.85 (7.92). H-NMR (CDCl₃): δ9.7(s,1H,CHO),5.8(s,1H,H₁₁),1.66(s,3-Me), 1.52(s,9-Me),1.0(d,6-Me).
 Brossi, A.: Venugopalan, B.: Domingquez, G. L.: Yeh, H. J. C.: Flippon
- 6. Brossi, A.; Venugopalan, B.; Domingguez, G. L.; Yeh, H. J. C.; Flippon Anderson, J. L.; Buchs, P.; Luo, X.D.; Milhous, W.; Peters, W. J. Med. <u>Chem. 1998,31</u>,645.
- Chem. 1998,31,645.
 7. Compound 3. Solid mp 135-136°C, yield 72%. Analysis Calcd. for C₁₅H₂40₅. Calcd. (Found): C,63.36(63.40), H,8.51(8.60). H-NMR (CDC1₃): δ 5.6(s,1H,H₁₁),3.55(two d,J=11.5Hz,OCH₂),1.6(s,3-Me), 1.5(s,9-Me),1.0(d,6-Me). 13C-NMR (CDC1₃): δ 19.38(13-Me),24.2(14-Me),24.5(12-Me),25.13(C₈),25.3(C₅),32.7(C₇),36.95(C₄),37.38(C₆),49.3 (C_{8a}),51.7(C_{5a}),67.5(C₁₅),84.73(C_{11a}),87.07(C₉),97.09(C₁₁),103.59 (C₃). NOE: OCH₂ --> H₁₁. IR (KBr, cm⁻¹): 3420(OH),830,885,1120.
 8. Klayman, D. L. Science 1985,228,1049.
 9. The large ³J_{H10}/H₉ (9.2Hz) observed in 5 is indicative of a trans diaxial coupling between H₁₀ and H₉, hence H₁₀ was assigned to a β configuration. The ³J_{H10}/H₉ value of 3.6 Hz in 4 suggests a α configuration for H₁₀. Compounds 4 and 5 gave satisfactory elemental analysis.
- analysis.
- Cao, M; Hu, S; Li, M; Zhang, S. <u>Nanjing Yaoxueyuan Xuebao</u> 1982,1,53;
 <u>Chem. Abstr.</u> 1984, 100, 34720h.